From Quasi-static to Kinodynamic Planning for Spherical Tensegrity Locomotion

نویسندگان

  • Zakary Littlefield
  • David Surovik
  • Weifu Wang
  • Kostas E. Bekris
چکیده

Tensegrity-based robots can achieve locomotion through shape deformation and compliance. They are highly adaptable to surroundings, have light weight, low cost and high endurance. Their high dimensionality and highly dynamic nature, however, complicate motion planning. So far, only rudimentary quasi-static solutions have been achieved, which do not utilize tensegrity dynamics. This work explores a spectrum of planning methods that increasingly allow dynamic motion for such platforms. Symmetries are first identified for a prototypical spherical tensegrity robot, which reduce the number of needed gaits. Then, a numerical process is proposed for generating quasi-static gaits that move forward the system’s center of mass in different directions. These gaits are combined with a search method to achieve a quasi-static solution. In complex environments, however, this approach is not able to fully explore the space and utilize dynamics. This motivates the application of sampling-based, kinodynamic planners. This paper proposes such a method for tensegrity locomotion that is informed and has anytime properties. The proposed solution allows the generation of dynamic motion and provides good quality solutions. Evaluation using a physics-based model for the prototypical robot highlight the benefits of the proposed scheme and the limits of quasi-static solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Admissible velocity propagation: Beyond quasi-static path planning for high-dimensional robots

Path-velocity decomposition is an intuitive yet powerful approach to address the complexity of kinodynamic motion planning. The difficult trajectory planning problem is solved in two separate and simpler steps : first, find a path in the configuration space that satisfies the geometric constraints (path planning), and second, find a time-parameterization of that path satisfying the kinodynamic ...

متن کامل

Design and control of compliant tensegrity robots through simulation and hardware validation.

To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center, Moffett Field, CA, USA, has developed and validated two software environments for the analysis, simulation and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware comp...

متن کامل

Design and Simulation of Compliant Tensegrity Robots for Planetary Exploration

The Dynamic Tensegrity Robotics Lab (DTRL) at the NASA Ames Research center is actively researching the design, control, and locomotion of tensegrity robots for planetary exploration. The advantage of using a tensegrity robot emerges from the fact that it behaves as a structured soft robot. This term, structured soft robotic system, comes from the fact that tensegrity systems are traditionally ...

متن کامل

Reliable Dynamic Motions for a Stiff Quadruped

We present a kinodynamic planning methodology for a high-impedance quadruped robot to negotiate a wide variety of terrain types with high reliability. We achieve motion types ranging from dynamic, double-support lunges for efficient locomotion over extreme obstacles to careful, deliberate foothold and body pose selections which allow for precise foothold placement on rough or intermittent terrain.

متن کامل

An Exact Solution for Quasi-Static Poro-Thermoelasticity in Spherical Coordin

In this paper the Quasi-Static poro-thermoelasticity model of a hollow and solid sphere under radial symmetric loading condition (r, t) is considered. A full analytical method is used and an exact unique solution of the Quasi-Static equations is presented. The thermal, mechanical and pressure boundary conditions, the body force, the heat source and the injected volume rate per unit volume of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017